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Abstract
Quantitative structure–activity relationship (QSAR) studies have been carried out on indolyl aryl sulfones, a class of novel
HIV-1 non-nucleoside reverse transcriptase inhibitors, using physicochemical, topological and structural parameters along with
appropriate indicator variables. The statistical tools used were linear methods (e.g., stepwise regression analysis, partial least
squares (PLS), factor analysis followed by multiple regression (FA-MLR), genetic function approximation combined with
multiple linear regression (GFA-MLR) and GFA followed by PLS or G/PLS and nonlinear method (artificial neural network or
ANN). In case of physicochemical parameters, GFA-MLR generated the best Equation (n ¼ 97, R 2 ¼ 0.862, Q 2 ¼ 0.821).
Using topological parameters, the best Equation (based on leave-one-out Q 2) was obtained with stepwise regression technique
(n ¼ 97, R 2 ¼ 0.867, Q 2 ¼ 0.811). When topological and physicochemical parameters were used in combination, statistical
quality increased to a great extent (n ¼ 97,R 2 ¼ 0.891,Q 2 ¼ 0.849 from stepwise regression). Furthermore, the whole dataset
had been divided into test (25% of whole dataset) and training (remaining 75%) sets. Models were developed based on the
training set and predictive potential of such models was checked from the test set. The selection of the training set was based on
K-means clustering of the standardized descriptors (topological and physicochemical). In this case also the best results were
obtained with stepwise regression (n ¼ 72, R 2 ¼ 0.906, Q 2 ¼ 0.853) but external predictive capacity of this model
(R2

pred ¼ 0:738) was inferior to the model developed from GFA-MLR technique (R 2 ¼ 0.883, Q 2 ¼ 0.823, R2
pred ¼ 0:760).

However, the squared regression coefficient between observed activity and predicted activity values of the test set compounds for
the best linear model, i.e., GFA-MLR (r2 ¼ 0.736) was lower in comparison to the best nonlinear model developed using
artificial neural network (r2 ¼ 0.781). Thus, based on external validation, the ANN models were superior to the linear models.
The predictive potential of the best linear Equation (stepwise regression model) was superior to that of the previously published
CoMFA (Q 2 ¼ 0.81, SDEPTest ¼ 0.89) on the same data set (Ragno R. et al., J Med Chem 2006, 49, 3172–3184).
Furthermore, the physicochemical parameter based models also supported the previous observations based on docking (Ragno
R. et al., J Med Chem 2005, 48, 213–223).
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Introduction

Acquired immunodeficiency syndrome (AIDS),

characterized by opportunistic infections (T4 cell

falls below 200/mL) and opportunistic neoplasms, is

one of the leading causes of death worldwide [1].

About 39.5 million people are living with HIV positive

till 2006. Nearly 4.3 million people have newly

infected with HIV, and AIDS have claimed 2.9 million

people including 3,80,000 children under 15 years in

the year of 2006 [2].

There are generally two serotypes of HIV virus,

which can be distinguished genetically and antigene-

tically. HIV-1 causes more fatal and rapid infection
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than HIV-2. There are three subgroups of HIV-1

including M (major or main), N (new) and O (outlier)

[3]. HIV is a special type of retrovirus of lentivirus

family. There are at least nine recognizable genes in

the HIV virus, but the major structures are composed

of gag, pol and env. The other six genes are involved in

the infection process as well as regulatory production

in gag, pol and env genes. The gag gene is

“group specific antigen” composed of viral nucleo-

capsid. It is responsible for development of virus in the

absence of pol and env genes. The pol gene codes for

HIV enzymes—reverse transcriptase, protease and

integrase. Finally the env gene codes for the two major

envelope’s glycoproteins (gp120 and gp4) [4]. When

HIV enters into the blood stream, it binds its

glycoprotein (gp120) to a T4 cell’s or macrophage’s,

CD4 receptor and the coreceptor CCR5 and/or

CXCR4. Then it fuses with the cell membrane and

penetrate through it. Inside the cell virion sheds off its

coat and leaves its envelope. Single stranded RNA is

converted to single stranded DNA using reverse

transcriptase from which DNA synthesis of a second

strand occurs to form double stranded DNA. This

migrates to the nucleus of the cell and integrates into

host nucleus by integrase. This provirus transfers its

genetic codes to that of the host which becomes a virus

factory [5]. Newly formed HIV core proteins,

enzymes and genomic RNA gather inside the cell

and an immature viral particles composed of long

chain proteins are not infectious. These are divided

into small fragments to make them infectious using

protease enzyme [6]. Thus, the inhibition of reverse

transcriptase and protease are the most effective target

for anti-HIV drug development.

Because of emergence of resistance to present

antiviral therapy, development of new anti-HIV drugs

is necessary. This necessitates QSAR studies for

developing good predictive models involving ligands

with different functionalities acting on different anti-

HIV targets. Villar et al. have developed a theoretical

model using probabilistic neural network that dis-

criminates between active and non-active drugs

against HIV-1 with four different mechanisms of

action of active drugs [7]. QSAR of HIV-1 reverse

transcriptase inhibitory activities of 2-(2,6-dihalophe-

nyl-2-yl)-thiazolidine-4-ones have been studied by

Probhakar et al. using topological descriptors

obtained from DRAGON software [8]. Senese and

Hopfinger have used HIV-1 protease inhibitors

derived from norstatine containing 3S-amino-2S-

hydroxy-4-phenylbutanoic acid core to construct

4-D QSAR model [9]. 3D-QSAR studies have been

performed on a series of inhibitors of HIV-1 integrase

with respect to their inhibition of 30-processing and

30-end joining steps in vitro by Makhija and Kulkarni

[10]. CoMFA and CoMSIA and docking studies have

been performed by Buolamwini et al. on confor-

mationally restrained cinnamoyl HIV-1 integrase

inhibitors to explore binding mode at the active site

[11]. Niwa has predicted responses for biological

targets including HIV-1 protease for diverse molecules

using probabilistic neural network and atom type

descriptors from their chemical structure for generat-

ing focused libraries, selecting compounds for screen-

ing and annotating biological activity for those

compounds whose activities are unknown [12].

Weekes and Fogel have used evolutionary optimiz-

ation, back propagation and data preparation issues in

QSAR modeling of HIV inhibition by HEPT

derivatives. Evolutionary computation gives appro-

priate set of weights and bias terms associated with

artificial neural network that minimize selected

functions of the error between the actual and desired

outputs [13]. Hopfinger and Senese have used simple

clustering technique to facilitate and improve model

selection and test set prediction (training set of 50

tetrahydropyrimidine 2-one based inhibitors of HIV-1

protease) [14]. A 3D-QSAR was applied to a set of

dipyridodiazepinone derivatives which is active against

wild and mutant type HIV-1 reverse transcriptase by

Pungpo et al. [15]. Ragno et al. have also performed

docking and 3D-QSAR (CoMFA) on indolyl aryl

sulfones to explore binding mode at HIV-1 reverse

transcriptase binding site [16].

The present group of authors [1,17–25] has

developed a few anti-HIV QSARs involving different

series of chemicals acting on different targets. In

continuation of such efforts, the present paper deals

with modeling of anti-HIV-1 activity of reverse

transcriptase inhibitor indolyl aryl sulfones reported

by Ragno et al. [16,26]. Some compounds were

excluded from our study due to lack of quantitative

activity data. We have modeled the data set using

linear techniques like multiple linear regression (with

stepwise regression, factor analysis and genetic

function approximation as variable selection strategy)

and partial least squares and compared the results

with those obtained from nonlinear method (feed-

forward back propagation artificial neural network).

The objectives of the present study include develop-

ment of QSAR models with physicochemical signifi-

cance in one hand and development of predictive

model with good validation characteristics on the

other hand for anti-HIV-1 activity of reverse trans-

criptase inhibitor indolyl aryl sulfones.

Materials and methods

The anti-HIV data (EC50) of indolyl aryl sulfone

derivatives [16,26] had been converted to logarithmic

scale [pC ¼ 2 logEC50 (M)] and then used for the

QSAR study. Though the original paper reported 117

compounds in total, twenty of the reported com-

pounds do not have exact biological activity values.

Thus, 97 compounds were considered for the present

QSAR study (Table I). There are four different

QSAR on anti-HIV indolyl aryl sulfones 981
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Table I. Structural features, observed and calculated data of HIV-1 reverse transcriptase inhibitory activity of indole aryl sulfones

.

Structural features Anti-HIV activity (2 logEC50(M))

Sl. No. Structure X Y Z W obs cala calb calc

1. A SO2 H NH2 Cl 9.00 8.16 7.99 8.02

2.* A S H OEt H 5.85 4.73 5.52 4.98

3. A S 2-NH2 OEt Cl 5.64 5.07 5.36 5.21

4. A S 2-NH2-5-Cl OEt Cl 5.60 5.14 5.49 5.09

5. A SO2 H OEt H 5.43 5.86 6.37 6.24

6. A SO2 2-NH2-5-Cl OEt H 5.60 5.65 5.88 5.82

7. A SO2 2-NH2-5-Cl OEt Cl 5.72 6.33 6.68 6.35

8. A S H NH2 H 5.85 6.31 6.35 6.25

9.* A S 2-NH2-5-Cl NH2 H 5.05 6.00 5.59 5.85

10. A S H NH2 Cl 7.69 6.98 7.07 6.79

11. A S 2-Me NH2 Cl 6.52 6.93 6.96 6.77

12. A S 4-F NH2 Cl 5.85 6.80 6.57 6.54

13. A S 4-Cl NH2 Cl 5.51 6.18 6.23 6.21

14. A S 4-i-Pr NH2 Cl 5.72 5.63 5.53 5.94

15.* A S 4-t-Bu NH2 Cl 5.10 6.31 7.26 6.35

16. A S 3,5-Me2 NH2 Cl 8.22 7.64 7.69 7.72

17. A S 2,6-Cl2 NH2 Cl 5.92 6.17 6.58 6.27

18. A S 2-NH2-5-Cl NH2 Cl 5.79 6.67 6.33 6.39

19.* A SO2 H NH2 H 6.74 7.51 7.21 7.51

20.* A SO2 2-NH2-5-Cl NH2 H 6.52 7.26 6.74 7.12

21. A SO2 2-Me NH2 Cl 9.00 8.14 8.06 8.01

22. A SO2 3-Me NH2 Cl 9.00 8.48 8.38 8.45

23. A SO2 4-Me NH2 Cl 8.52 7.81 7.61 7.77

24. A SO2 4-F NH2 Cl 7.85 7.98 7.55 7.77

25. A SO2 4-Cl NH2 Cl 7.96 7.36 7.21 7.47

26. A SO2 4-i-Pr NH2 Cl 7.10 6.80 6.52 7.22

27. A SO2 4-t-Bu NH2 Cl 6.87 7.47 8.24 7.24

28. A SO2 2,4-Me2 NH2 Cl 8.40 7.82 7.70 7.76
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Table I – continued

Structural features Anti-HIV activity (2 logEC50(M))

Sl. No. Structure X Y Z W obs cala calb calc

29. A SO2 3,5-Me2 NH2 Cl 8.40 8.83 8.79 8.87

30. A SO2 2,6-Cl2 NH2 Cl 7.00 7.39 7.86 7.53

31. A SO2 2-NH2-5-Cl NH2 Cl 7.40 7.91 7.54 7.64

32. A SO2 3,5-Me2 NH2 Br 8.70 8.28 8.30 8.50

33. A SO2 3,5-Me2 NH2 COMe 7.82 8.56 8.20 8.49

34.* A SO2 3,5-Me2 NH2 CH(OH)Me 7.60 5.61 6.51 7.37

35.* A S H NHNH2 Cl 6.26 5.80 5.97 5.67

36. A S 4-Me NHNH2 Cl 5.82 5.47 5.54 5.41

37.* A S 4-F NHNH2 Cl 5.30 5.64 5.47 5.42

38. A S 4-Cl NHNH2 Cl 5.00 5.02 5.14 5.09

39. A SO2 H NHNH2 H 6.28 6.29 6.10 6.42

40.* A SO2 H NHNH2 Cl 8.00 6.96 6.89 6.95

41.* A SO2 4-Me NHNH2 Cl 7.30 6.63 6.51 6.68

42. A SO2 4-F NHNH2 Cl 6.49 6.80 6.45 6.69

43. A SO2 4-Cl NHNH2 Cl 6.72 6.18 6.11 6.37

44. A SO2 3,5-Me2 NHNH2 Cl 6.89 7.66 7.69 7.87

45. A SO2 2-NH2-5-Cl NHNH2 Cl 6.52 6.73 6.44 6.54

46. B SO2 2-NO2 COOEt H 5.74 5.58 5.80 5.63

47. B SO2 2-NH2-5-Cl COOEt H 5.74 5.16 5.69 5.24

48.* B SO2 2-NH2-5-Cl COOEt 5-Cl 5.08 5.81 6.46 5.78

49.* B SO2 H CONH2 H 4.82 4.77 4.92 5.37

50. B SO2 H CONH2 5-Cl 4.18 5.38 5.68 5.90

51. B SO2 2-NO2 H H 5.30 5.56 5.13 5.19

52. B SO2 2-NH2 H H 4.96 5.12 4.87 4.93

53.* B SO2 2-NO2-5-Cl H H 5.40 5.67 5.36 5.09

54. B SO2 2-NH2-5-Cl H H 6.00 5.18 5.04 4.83

55. B SO2 2-NO2-4-Cl H H 4.80 4.86 4.48 4.65

56. B SO2 2-NH2-4-Cl H H 4.13 4.35 4.14 4.39

57. B SO2 2-Cl-5-NO2 H H 5.22 4.96 5.27 5.00

58.* B SO2 2-Cl -5- NH2 H H 3.82 4.09 5.06 5.25

59. A S H NHCH2CH2OH 5-Cl 4.40 4.11 4.23 4.11

60. A S 2-Me NHCH2CH2OH 5-Cl 4.30 4.09 4.12 4.08

61. A S 3-Me NHCH2CH2OH 5-Cl 4.10 4.47 4.53 4.53

62. A S 4-Me NHCH2CH2OH 5-Cl 3.92 3.82 3.79 3.88

63.* A S 2,3-Me2 NHCH2CH2OH 5-Cl 4.00 4.35 3.95 4.51

64. A S 3,5-Me2 NHCH2CH2OH 5-Cl 4.92 4.84 4.85 4.97

65.* A SO2 H NHCH2CH2OH 5-Cl 6.00 5.22 5.14 5.30

66.* A SO2 2-Me NHCH2CH2OH 5-Cl 4.50 5.22 5.21 5.26

67. A SO2 3-Me NHCH2CH2OH 5-Cl 5.52 5.58 5.53 5.76

68. A SO2 4-Me NHCH2CH2OH 5-Cl 4.37 4.93 4.76 5.04

69. A SO2 2,4-Me2 NHCH2CH2OH 5-Cl 5.10 4.95 4.85 5.00

70. A SO2 3,5-Me2 NHCH2CH2OH 5-Cl 6.10 5.96 5.94 6.23
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Table I – continued

Structural features Anti-HIV activity (2 logEC50(M))

Sl. No. Structure X Y Z W obs cala calb calc

71. A S H NHNHCH2CH2OH 5-Cl 3.70 3.69 3.86 3.81

72.* A S 2-Me NHNHCH2CH2OH 5-Cl 4.00 3.68 3.75 3.79

73. A S 4-Me NHNHCH2CH2OH 5-Cl 3.22 3.42 3.42 3.59

74.* A S 2,4-Me2 NHNHCH2CH2OH 5-Cl 2.92 3.43 3.33 3.57

75. A S 3,5-Me2 NHNHCH2CH2OH 5-Cl 4.52 4.45 4.48 4.65

76. A SO2 H NHNHCH2CH2OH 5-Cl 5.00 4.78 4.77 4.98

77. A SO2 2-Me NHNHCH2CH2OH 5-Cl 4.30 4.79 4.84 4.95

78.* A SO2 3-Me NHNHCH2CH2OH 5-Cl 5.15 5.16 5.16 5.43

79. A SO2 4-Me NHNHCH2CH2OH 5-Cl 4.39 4.51 4.39 4.73

80.* A SO2 2,4-Me2 NHNHCH2CH2OH 5-Cl 4.10 4.54 4.48 4.69

81. A SO2 3,5-Me2 NHNHCH2CH2OH 5-Cl 6.00 5.55 5.57 5.90

82. A SO2 3,5-Me2 NHCH2CONH2 5-Cl 8.22 7.89 8.44 7.77

83. A SO2 3,5-Me2 NHCH2CONHNH2 5-Cl 8.00 7.36 7.26 7.57

84.* A SO2 3,5-Me2 NHCH2CONHCH2CONH2 5-Cl 9.16 7.46 8.00 7.45

85. A SO2 3,5-Me2 NHCH2CONHCH2CONHNH2 5-Cl 7.22 6.93 6.82 7.24

86. A SO2 3,5-Me2 NHCH2CONHCH(Me)CONHNH2 5-Cl 7.10 7.11 7.15 7.38

87. A SO2 3,5-Me2 NHCH2CONHCH(Me)CONH2 5-Cl 7.85 7.58 8.26 7.59

88.* A SO2 3,5-Me2 NHCH2CONHCH2CONHCH2CONH2 5-Cl 6.92 7.07 7.57 7.11

89. A SO2 3,5-Me2 NHCH2CONHCH2CONHCH2CONHNH2 5-Cl 6.75 6.56 6.39 6.90

90. A SO2 H 2-oxazolidone-3-yl amino 5-Cl 7.82 8.07 7.84 7.59

91. A SO2 3,5-Me2 2-oxazolidone-3-yl amino 5-Cl 9.05 8.83 8.66 8.48

92.* A SO2 3,5-Me2 Me 5-Cl 7.70 8.72 7.95 7.80

93. A SO2 3,5-Me2 i-Pr 5-Cl 9.16 8.99 9.04 7.82

94. A SO2 3,5-Me2 c-He 5-Cl 7.30 7.62 7.62 7.66

95. A SO2 3,5-Me2 COMe 5-Cl 8.30 9.01 8.95 7.83

96. A SO2 3,5-Me2 COOEt 5-Cl 7.70 8.31 7.45 7.79

97.* A SO2 3,5-Me2 CONHNH2 5-Cl 9.00 7.36 7.24 7.55

*stands for a member of the test set. afrom Equation 16. bfrom Equation 19. cfrom ANN (Model 4).
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positions of substitutions: one is the fragment flanked

between the indole nucleus and phenyl ring (X) and

the second one is the substitution on the phenyl ring

(Table I). The other two positions are second and fifth

positions of the indole nucleus.

For the construction of the linear models, multiple

regression (with stepwise regression, factor analysis

and genetic function approximation as variable

selection tools) and partial least squares were used.

Descriptors

Physicochemical parameters like hydrophobicity (p),

electronic (Hammett s), steric (molar refractivity MR

and STERIMOL L, B1 to B4) substituent constants

(Table II) of phenyl ring substituents were taken

from reference [27]. The topological descriptors

including Balaban index (Jx), connectivity indices

(1x;2x;1xv;2xv etc), kappa shape indices (1k;2k;3k etc),

molecular flexibility index (F), Wiener index, Zagreb

index, E-state indices (S_sCH3
;S_ssCH3

etc) were

calculated using Cerius2 version 10 [28] on a silicon

graphics computer. Besides these, structural descrip-

tors like number of chiral centres, molecular weight

(MW), number of rotatable bond (Rotlbonds) and

indicator parameters as defined in Table III were also

used. For the development of the QSAR models we

initially considered physicochemical and topological

parameters separately and then combination of both

types of parameters along with indicators variables

were used. In the total pool of descriptors, there were

23 physicochemical, 52 topological and 9 indicator

parameters from which variable selection was made

using different strategies as detailed below.

Cluster analysis and validation

Initially QSAR models were developed on the whole

data set. The models were crossvalidated using leave-

one-out method. However, internal validation does

not ascertain that the model will perform well on a

new set of data. Thus, the whole data set was divided

into training and test sets and the models developed

from training set were externally validated using the

test set. Predictive capacity of a model for new

chemical entities is influenced by chemical nature of

the training set molecules used for development of the

model [29–31]. In actual case, the test set molecules

will be predicted well when these molecules are

structurally very similar to the training set molecules.

The reason is that the model has captured all features

common to the training set molecules.

Any QSAR modeling should ultimately lead to

statistically robust models capable of making accurate

and reliable predictions of biological activities of

compounds. When QSAR models are developed, it is

important to validate any fitted models to check that it

is plausible that its predictions will carry over to fresh

data not used in the model fitting exercise.

The validation strategies check the reliability of the

developed models for their possible application on a

new set of data, and confidence of prediction can thus

be judged. Often, truly external data points being

unavailable for prediction purpose, original data set

compounds are divided into training and test sets.

A QSAR model’s ability to predict the properties of

unknown chemicals depends largely on the nature of

the training set and the algorithm used to establish the

structure–activity relationship [29]. The process

Table II. Values of physicochemical parameters (substituent constants)#.

Ring substitution p MRa sm sp L B1 B2 B3 B4

NH2 21.23 0.542 20.16 20.66 2.93 1.50 1.50 1.84 1.84

Cl 0.71 0.603 0.37 0.23 3.52 1.80 1.80 1.80 1.80

CH3 0.56 0.565 20.07 20.17 3.00 1.52 2.04 1.90 1.90

F 0.14 0.092 0.34 0.06 2.65 1.35 1.35 1.35 1.35

i-Propyl 1.53 1.496 20.07 20.15 4.11 2.04 2.76 3.16 3.16

t-Butyl 1.98 1.962 20.10s 20.20 4.11 2.59 2.97 2.86 2.86

NO2 20.28 0.736 0.71 0.78 3.44 1.70 1.70 2.44 2.44

H 0.00 0.103 0.00 0.00 2.06 1.00 1.00 1.00 1.00

#Obtained from reference [27]. aMR values are scaled with 0.1 as usual.

Table III. Definition of indicator variables.

Used indicators Meaning of indicators

IZ_amino Indicator having value 1 if amino group is

present at Z position otherwise value 0

IZ_ethoxy Indicator having value 1 if ethoxy group is

present at Z position otherwise value 0

IZ_hydrazine Indicator having value 1 if hydrazine group is

present at Z position otherwise value 0

IZ_ethcarb Indicator having value 1 if ethyl carboxylate

group is present at Z position otherwise value 0

IZ_hetami Indicator having value 1 if hydroxyethylamino

group is present at Z position otherwise value 0

IZ_hethydr Indicator having value 1 if hydroxyethylhydra-

zine group is present at Z position otherwise

value 0

IW_Cl Indicator having value 1 if chlorine atom is

present at W position otherwise value 0

IX Indicator having value 1 if sulfur dioxide group is

present at X position otherwise value 0

INH Indicator having value 1 if unsubstituted

nitrogen atom is present in the indole nucleus

otherwise value 0
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is based on the assumption that a molecule that is

structurally very similar to the training set molecules

will be predicted well because the model has captured

features that are common to the training set molecules

and is able to find them in the new molecule. On the

other hand, a new molecule which has very little in

common with the training set data should not be

predicted very well, i.e., the confidence in its

prediction should be low [30]. A model’s predictive

accuracy and confidence for different unknown

chemicals varies according to how well the training

set represents the unknown chemicals and how robust

the model is in extrapolating beyond the chemistry

space defined by the training set. Therefore, assessing

a model’s prediction accuracy outside the training

domain is a vital step toward defining the application

domain of a model for the regulatory acceptance of

QSARs. The selection of the training set is signifi-

cantly important in QSAR analysis. In this paper, the

data set was divided into training and test sets (75%

and 25% respectively of the total number of

compounds) based on clusters obtained from

K-means clustering applied on standardized descrip-

tor matrix. All the parameters were standardized to

values between 0 and 1 and the whole dataset was

clustered into seven subgroups from each of which

25% of compounds were selected as members of the

test set. Cluster analysis is a method of arrangement of

objects into groups [32–34]. It classifies different

objects into groups in such a way that the degree of

association between two objects is maximum if they

possess same group and otherwise minimum. Most

clustering techniques are hierarchical, i.e, the resul-

tant classification has an increasing number of nested

classes [32]. There are some non-hierarchical

methods e.g., K-means clustering [32–34]. In this

method, number of groups or clusters (K) generated is

specified by the user. At the end of the analysis the

data are split between K clusters. From the results of

K-means clustering analysis, one can examine the

means for each cluster on each dimension to assess

how distinct the K clusters are. After clustering, the

test set compounds are selected from each cluster by

taking approximately 25% of the compounds from

each cluster so that test and training set can represent

all clusters and the whole dataset.

For the development of equations different chemo-

metric tools were utilized.

Stepwise regression

In stepwise regression, a multiple-term linear equation

is built step-by-step. First, an initial model is

recognized and then the model is altered repeatedly at

the previous step by adding or removing a predictor

variable according to the “stepping criteria” [35]. At

the last step the search is terminated when stepping is

no longer possible or when a specified maximum

number of steps has been reached. Specifically, at each

step all variables are reviewed and evaluated to

determine which one will contribute most to the

equation. The method selected for stepwise regression

is forward selection and backward elimination.

The criteria “F to Enter” and “F to Remove”determine

how significant or insignificant the contribution of a

variable in the regression equation respectively for

adding to the equation and removing from the

equation. A limitation of the stepwise regression search

approach is that it presumes that there is a single “best”

subset of X variables and seeks to identify it.

PLS

For PLS [36,37], “leave-one-out” method was used for

crossvalidation to obtain the optimum number of

components. PLS is a useful technique when number

of factors is large and they are highly collinear. This

technique generalizes and combines features from

principal component and multiple regression. In case

of PLS analysis on the present data set, based on the

standardized regression coefficients, the variables with

smaller coefficients were removed from the PLS

regression, until there was no further improvement in

Q 2 value, irrespective of the components. It gives

statistically more robust solution than MLR. To avoid

overfitting, a strict test for the significance of each

consecutive PLS component is necessary and then

stoppingwhenthecomponentsarenon-significant.This

ensures that the QSAR equations are selected based on

their ability to predict the data rather than to fit the data.

FA-MLR

Factor analysis [38,39] has been performed to find out

the relationship among variables. It reduces the large

numbers of variables to few factors from which

important variables for multiple linear regression can

be identified. It is a data processing step to identify the

variables contributing to the response variable.

The whole dataset containing biological activity and

all descriptor variables is extracted by principle

component method and rotated by VARIMAX rotation

to obtain Thurston’s simple structure. The effective

variables are selected from rotated component matrix

obtained from the previous operation. Linear regression

is performed using these variables.

GFA-MLR

For the development of genetic function approximation

(GFA) model Cerius2 4.10 version has been used. GFA

provides a new approach to the problem of developing

QSAR models. Genetic algorithms are derived with

the spread of mutations in a population. It was initially

conceived from two seemingly disparate algorithms - i)

Holland’s genetic algorithm and ii) Friedman’s
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multivariate adaptive regression splines algorithm [40].

GFA allows construction of models superior to standard

techniques and gives additional information not

provided by other techniques. A distinctive feature of

GFA is that it produces a population of models (e.g.,

100), instead of generating a single model, as do most

other statistical methods. These multiple models are

generated from random initial models using a genetic

algorithm. A “fitness function” (lack-of-fit or LOF) is

used to measure the quality of each model, so that the

best model receives the best fitness score. Features,

which are necessary for construction of the model, are

automatically selected by GFA. GFA can build not only

linear models but also higher order polynomials, splines

and Gaussian, i.e., the type of model is user-defined.

It can automatically remove outlier and perform

classification using spline-based terms. Its random

search procedure for building of the model leads to the

discovery of highly predictive models.

G/PLS

Genetic partial least squares (G/PLS) model is derived

from two methods: i) genetic function approximation

(GFA) and ii) partial least squares (PLS) [36,37].

Both of these methods are valuable analytical tools for

QSAR modeling where numbers of descriptors are

more than samples. Genetic function approximation is

used to select the appropriate variables to be used in

the development of model. It is followed by PLS

regression as fitting technique to weigh the relative

contribution of the selected variables in the final

model.

ANN

For the purpose of development of nonlinear model,

multilayer perceptron (MLP) of “Custom Network

Designer” had been selected to design the network.

We selected the back propagation method of MLP

followed by conjugate gradient descent to train the

network. The back propagation method is the most

popular method of developing nonlinear model.

There are at least three layers including one input

layer, one hidden layer and one output layer. Each

layer is interconnected with each other. In this method

difference between output of the network and the

desired output is calculated. This error value is back

propagated to the transfer function for adjustment of

weight. Through transfer function (sigmoid function),

the output is obtained as [41]

Oj ¼ f ðijÞ ¼
1

1 þ exp ð2bijÞ

where Oj is the output of node j and b is a gain, being

able to adjust the form of the function. Usually b is

taken as 1. Using the error signal to adjust the

connected weights, the following adjusted weights are

obtained for the output layer.

Wij ðnewÞ ¼ Wij ðoldÞ þ hdiOj þ a½DWij ðoldÞ�

In back propagation, the gradient vector of the error

surface is calculated. This vector points in the direction

of steepest descent from the current point, so one

knows that if one moves along it a “short” distance, one

will decrease the error. A sequence of such moves will

eventually find a minimum of some sort.

Conjugate gradient descent method is a good

secondary and advanced method of training multilayer

perceptron. It is generally used for the network of large

numbers of weights and/or multiple output units. It is

a batch update algorithm whereas back propagation

adjusts the weights of the network. Learning rate and

momentum of each epoch are adjusted and weight

decay is regularized.

Most work on assessing performance in neural

modeling concentrates on approaches to resampling.

A neural network is optimized using a training subset.

Often, a separate subset (the selection subset) is used

to halt training to mitigate over-learning, or to select

from a number of models trained with different

parameters. Then, a third subset (the test subset) is

used to perform an unbiased estimation of the

network’s likely performance.

Although the use of a test subset set allows us

to generate unbiased performance estimates, these

estimates may exhibit high variance. Ideally, one would

like to repeat the training procedure a number of

different times, each time using new training, selection

and test cases drawn from the population - then, one

could average the performance prediction over the

different test subsets, to get a more reliable indicator of

generalization performance.

In reality, one seldom has enough data to perform a

number of training runs with entirely separate training,

selection and test subsets. Crossvalidation is the

simplest resampling technique. We have cross-vali-

dated the network using 15 resampling. Using different

numbers of hidden layers and different numbers of

units per layer it was shown that the one hidden layer of

39 units had good predictive capacity on this dataset.

Model quality

The statistical qualities of the multiple regression

equations [42] were judged by the parameters like

explained variance (R2
a), correlation coefficient (R),

standard error of estimate (s) and variance ratio (F) at

specified degrees of freedom (df). All accepted MLR

equations have regression coefficients and F ratios

significant at 95% and 99% levels respectively, if not

stated otherwise. The generated QSAR equations were

validated by leave-one-out or LOO statistics [43,44] and

cross-validation R 2 (Q 2) and predicted residual sum
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of squares (PRESS) values were reported. In case of

external validation, predictive capacity of a model was

judged by its application for prediction of test set activity

values and calculation of predictive R2 (R2
pred) value.

Softwares

MINITAB [45] was used for stepwise regression and

PLS whereas SPSS [46] and STATISTICA [47] were

used for FA-MLR and ANN respectively. Cerius2

version 4.10 [28] was used for GFA and G/PLS

analyses.

Results and discussions

QSAR of the whole data set using physicochemical

descriptors and indicator variables

Stepwise regression. The following best equation was

obtained with ten variables using F criterion (F ¼ 4

for inclusion; F ¼ 3.9 for exclusion).

pC¼ 2:327þ0:43ð^0:304Þpmþ1:00ð^0:354ÞIZ_amino

þ1:32ð^0:306ÞIX22:18ð^0:455ÞIZ_hethydr

þ1:23ð^0:569ÞINH21:76ð^0:441ÞIz_hetami

þ0:89ð^0:400ÞIW_Cl20:99ð^0:447ÞB1_p

215:80ð^9:302ÞB1_oþ8:30ð^5:117ÞL_o

n¼97; R2¼0:854; Ra
2¼0:837; Q2¼0:816;

F¼50:324; s¼ 0:632; PRESS¼43:355 ð1Þ

All regression coefficients were significant at 95%

confidence level and the corresponding confidence

intervals were mentioned within parentheses. Equation

1 could explain 83.7% of the variance of the anti-HIV

activity while the leave-one-out predicted variance was

81.6%. Equation 1 contains 10 number of independent

variables, which is considerably large for 97 compounds,

though it maintains the recommended 1:5 ratio for the

number of descriptors and number of observations [29].

According to Livingstone and Salt [48,49], when

multiple linear regression models are constructed from

a large pool of potential independent variables, they

suffer from an effect known as “selection bias”.

The effect of selection bias is to make the resulting

models appear more significant than they really are.

According to them, a critical F 5% values should be used

to judge the significance of MLR models constructed by

best subset selection and the critical value (Fmax) is

calculated as follows [49]:

Fmax ¼
29:96n3:18N 0:21

p0:82
e lnðv2Þ 1:06lnðv2Þ20:97lnðnÞ23:97½ �

In the above equation, p is the number of predictor

variables used in a MLR equation, k is the total

number of variables from which the p variables have

been chosen and n is the number of compounds. For

Equation 1, the values of p, k and n are 10, 32 and 97

respectively. N is defined as k!/(p!(k 2 p)!) and v2 is

the second degree of freedom of the F-statistics, i.e.,

n 2 p 2 1. For Equation 1, Fmax is calculated to be

27.222 whereas the F value of the equation is 50.324.

Thus, Equation 1 passes the criterion of critical F

value as prescribed by Livingstone and Salt [49].

The positive value of hydrophobic substituent con-

stant(pm) indicates that theanti-HIV-1activity increases

with increase in lipophilicity of meta substituents of the

phenyl ring. The previously reported docking study [16]

indicates that the phenyl ring of indolyl aryl sulfones

occupies a hydrophobic aromatic-rich pocket formed

mainly by the side chain of Tyr181, Tyr188, Phe227 and

Tryp229. This explains why compound 29 (containing

3,5-dimethylphenyl moiety) has better anti-HIV-1

activity than compound 18 (containing 2-amino-5-

chlorophenyl moiety). The negative coefficients of the

STERIMOLwidthparameters (B1)at theorthoandpara

positions of the phenyl ring also indicate that the anti-

HIV-1 activity decreases with increase in width of the

ortho and para substituents. This indicates that the

pocket within which the phenyl ring fits is of restricted

size. The chlorine atom at the W position of the indole

moiety also increases the anti-HIV-1 activity as

evidenced from the positive coefficient of IW_Cl. This is

supported by the observation of the previously reported

docking study that this chlorine atom interacts with

Pro236. The positive coefficient of the parameter

IZ_amino indicates that a carboxamido substituent at 2

position of the indole nucleus is conducive to the anti-

HIV-1 activity while the negative coefficients of IZ_hethydr

and IZ_hetami indicate that presence of hydroxyethyla-

mino or hydroxyethylhydrazine group at Z position

contributes negatively to the anti-HIV-1 activity.

The positive coefficient of IX indicates that ZSO2Z

group at X position increases the activity. The sulfonyl

group fits in a little hydrophobic pocket made by the

side chains of Val106, Lys103 (only a and b CH2) and

Val179 as evidenced from the results of the docking

study[16]. The positive coefficient of INH indicates

that presence of the unsubstituted indole NH is

conducive for the anti-HIV-1 activity as evidenced

from the interaction of indole NH with the Lys101

carbonyl by hydrogen bond[16].

PLS. In case of PLS, the following equation with two

components was developed.

pC ¼ 4:514 þ 0:746pm 2 1:468sm 2 0:467B1_ p

þ 1:271IX þ 1:120IZ_amin o 2 1:584IZ_hetami

2 1:989IZ_hethydr þ 0:460IW_cl þ 0:941INH

n ¼ 97; R2 ¼ 0:826; Ra
2 ¼ 0:822;

Q2 ¼ 0:792; F ¼ 222:460; s ¼ 0:410;

PRESS ¼ 48:914 ð2Þ

Equation 2 could explain and predict 82.2% and

79.2% respectively of the variance of the anti-HIV
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activity, the values being slightly inferior to the

corresponding values in case of stepwise regression

equation. The negative coefficient of the electronic

parameter (sm) indicates that presence of electron

withdrawing meta substituent on the phenyl ring

decreases the anti-HIV-1 activity.

FA-MLR. From the factor analysis on the data matrix

consisting of anti-HIV activity of indolyl aryl sulfones

and physicochemical parameters with indicator

variables, it was observed that 8 factors could explain

the data matrix to the extent of 96.531%. The anti-HIV

activity was highly loaded with factor 6 (loaded in

IZ_hethy and IZ_amino) and moderately loaded in factor 1

(loaded in pm, MRm, L_m, B1_m, B2_m, B3_m and

B4_m), factor 7 (loaded in IZ_hetami) and factor 9

(loaded in Ix). Based on factor analysis the following

variables were selected for multiple linear regression.

The best equation evolved was as follows:

pC ¼ 3:97 þ 0:567ð^0:325Þpm 2 1:43ð^1:017Þsm

þ 1:98ð^0:529ÞINH 2 2:50ð^0:511ÞIZ_hethydr

2 2:03ð^0:493ÞIZ_hetami þ 1:21ð^0:372ÞIX

n ¼ 97; R2 ¼ 0:772; Ra
2 ¼ 0:757;

Q2 ¼ 0:739; F ¼ 50:890; s ¼ 0:771;

PRESS ¼ 61:309 ð3Þ

Equation 3 involved six descriptors explaining and

predicting 75.7% and 63.7% respectively of the

variance of the activity. The statistical quality of

Equation 3 was inferior to both Equations 1 and 2.

The critical Fmax value for Equation 3 calculated

according to Livingstone and Salt [49] was 17.958.

The F value of Equation 3 being 50.890, this equation

passed the critical F value test.

GFA. In case of GFA (100,000 iterations), the

following equation with 11 variables appeared as the

best equation.

pC ¼ 0:755 2 2:27IZ_hethydro 2 1:85IZ_hetami

þ 0:886IW _Cl þ 1:57B3_mþ 1:03IZ_amin o

þ 1:32INH þ 1:30IX 2 0:598L_p 2 6:80MRo

þ 3:39B4_o 2 2:15B1_m

n ¼ 97; R2 ¼ 0:862; Ra
2 ¼ 0:844;

Q2 ¼ 0:821; F ¼ 48:280; s ¼ 0:618;

PRESS ¼ 42:022 ð4Þ

Equation 4 was comparable in statistical quality to

that of Equation 1. The critical Fmax value for Equation

4 calculated according to Livingstone and Salt [49] was

28.723. The F value of Equation 4 being 48.280, this

equation passed the critical F value test. Equation 4

showed negative coefficient of B1 for meta substituent

on the phenyl ring while positive coefficient of B3 for the

same substituent and this suggested that the meta

substituents on the phenyl ring should be of optimum

shape for interaction with the enzyme cavity.

G/PLS. In G/PLS (5,000 iterations) the best equation

was obtained with nine variables and three

components.

pC ¼ 4:921 2 1:616IZ_hetami 2 2:064IZ_hethydr

þ 1:014IZ_amin o þ 1:449IX þ 0:423B1_m

þ 0:865IW _Cl 2 0:572B3_p 2 0:702B1_o

þ 1:138INH

n ¼ 97; R2 ¼ 0:825; Ra2 ¼ 0:819;

Q2 ¼ 0:788; F ¼ 145:810; s ¼ 0:412;

PRESS ¼ 49:924 ð5Þ

Equation 5 was comparable in statistical quality to

Equation 2. Equation 5 could explain and predict

81.9% and 78.8% respectively of the variance of the

anti-HIV-1 activity.

QSAR of the whole data set using topological descriptors

and indicator variables. In search of models of better

statistical quality, equations using topological parameters

and indicator variables were developed which are shown

in Table IV. From stepwise regression, Equation 6 with

twelve predictor variables was obtained. This equation

involves five E-state parameters, two connectivity

parameters and one flexibility index. Equation 6 was

comparable in statistical quality to Equation 1 obtained

from physicochemical descriptors. In case of PLS

regression, Equation 7 with nineteen variables and six

components (optimized with crossvalidation) was

obtained. Equation 7 involves five E-state parameters,

two molecular connectivity parameters, four indicator

parameters apart from Balaban index, hydrogen bonding

parameter and number of rotatable bonds. The predicted

variance (Q2) value of Equation 7 was lower than that of

the stepwise regression model Equation 6 but was

comparable to that of Equation 2, the PLS model

obtained from physicochemical and indicator

parameters. From FA-MLR, Equation 8 was obtained

which showed statistical quality and prediction potential

less than those of both stepwise regression and PLS

models. Equation 8 was slightly inferior to Equation 3

obtained from the physicochemical descriptors.

The GFA model of 100,000 iterations produced the

best equation with eleven variables [Equation 9].

The predicted variance of this equation was 80.4%

while the explained variance was 84.1%. In case of

G/PLS with 5,000 iterations, Equation 10 (five

components) with 73.6% predicted variance and
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77.0% explained variance was obtained. Because of large

pool of descriptors used (from which variables were

chosen), Equations 6 and 9 did not pass the criterion of

critical Fmax value as recommended by Livingstone and

Salt [49]. However, we selected the best equation based

on internal validation statistics (see the Overview section

below).

QSAR of the whole data set using combination of

physicochemical and topological descriptors and indicator

variables. Attempt was also made to develop models

using combined pool of descriptors and the best

equations are shown in Table V. Equation 11 was

developed from stepwise regression. This equation

consisted of eleven predictors which included one

flexibility index, three E-state indices, two sterimol

parameters and one kappa shape index. The values of

explained variance and predicted variance had been

improved to some extent on using physicochemical and

topological descriptors in combination. Equation 12

involving 18 descriptors (five components) was a PLS

model obtained from combined pool of descriptors and

statistical qualityof this modelwas better than that of the

PLS models obtained from individual group of

descriptors [Equations 2 and 7]. From FA-MLR,

Equation 13 was developed using six variables. This

equation had more predictive power than Equation 3

Table IV. Different equations obtained from topological descriptors using different statistical methods (whole set).

Parameters

Statistical

method

Equation

No.

Topological

and indicator

Stepwise

regression

(6) pC ¼ 20.334 þ 6.67(^1.215)3xc 2 0.192(^0.048)S_sOH þ 9.00(^4.114)INH

2 7.24(^1.712)3xvc 2 0.118(^0.062)S_sNH2
2 0.135(^0.054)S_sF

þ 1.38(^0.533)Iw_Cl 2 0.183(^0.080)S_sCl þ 2.39(^1.175)IZ_ethcarb

þ 5.60(^3.675)S_aasN 2 0.779(^0.272)1k þ 0.022(^0.018)MW

n ¼ 97, R 2 ¼ 0.867, R2
a ¼ 0.849, Q 2 ¼ 0.811, F ¼ 45.799, s ¼ 0.609, PRESS ¼ 44.385

PLS (7) pC ¼ 22.032 þ 2.898JX þ 0.1663k 2 0.182f þ 0.1572x þ 0.3913xc 2 0.6953xvc
2 0.121S_sNH2 þ 0.211S_ssNH þ 0.285S_aaNH þ 1.200S_sssN þ 0.042S_dO

2 0.136Rotlbonds 2 0.464Hbondacceptor þ 0.635IZ_amino þ 0.925IZ_ethcarb

2 2.164IZ_hetami 2 2.518IZ_hethydr þ 0.886IW_cl þ 1.040INH

n ¼ 97, R 2 ¼ 0.847,R2
a ¼ 0.837, Q 2 ¼ 0.782, F ¼ 83.120, s ¼ 0.359, PRESS ¼ 51.130

FA-MLR (8) pC ¼ 8.391 2 1.489(^0.404)S_aaaC 2 1.528(^0.528)S_aasN 2 1.70(^0.585)IZ_hetami

2 2.264(^0.598)IZ_hethydr þ 0.523(^0.442)IZ_amin o

n ¼ 97, R 2 ¼ 0.721, R2
a ¼ 0.706, Q 2 ¼ 0.688, F ¼ 47.010, s ¼ 0.656, PRESS ¼ 73.354

GFA-MLR (9) pC ¼ 2.52 2 1.8833xvc þ 0.638IW_Cl 2 1.167S_dssC þ 4.301IX þ 0.298S_sCH3
2 0.432SC3C

2 1.013Rotlbonds 2 0.586SC3P þ 0.982S_aaNH þ 0.298Zagreb þ 1.971IZ_ethcarb

n ¼ 97, R 2 ¼ 0.859, R2
a ¼ 0.841, Q 2 ¼ 0.804, F ¼ 47.030, s ¼ 0.625, PRESS ¼ 46.199

G/PLS (10) pC ¼ 4.377 þ 0.072S_dO 2 0.422Rotlbonds þ 0.305S_sCH3
þ 2.489INH

þ 0.546IW_Cl 2 0.108S_sOH 2 1.0203xvc
n ¼ 97, R 2 ¼ 0.782, R2

a ¼ 0.770, Q 2 ¼ 0.736, F ¼ 65.290, s ¼ 0.512, PRESS ¼ 62.105

Table V. Different equations obtained from combined set of descriptors using different statistical methods (whole set).

Physicochemical,

topological and

indicator

Stepwise

regression

(11) pC ¼ 2.222 þ 2.55(^0.424)3xc 2 0.146(^0.046)S_sOH þ 2.94(^0.507)INH

2 7.00(^2.080)B1_p 2 2.77(^0.843)f þ 2.17(^0.837)IZ_ethcarb 2 0.117(^0.052)S_sNH2

þ 2.23(^0.982)3kAM þ 3.18(^1.217)L_p þ 0.70(^0.396)IW_cl þ 0.152(^0.117)S_aaCH

n ¼ 97, R 2 ¼ 0.891, R2
a ¼ 0.877, Q 2 ¼ 0.849, F ¼ 63.403, s ¼ 0.548, PRESS ¼ 35.387

PLS (12) pC ¼ 8.698 þ 0.3983xc þ 0.139S_sCH3 2 0.578S_aaaC þ 0.162S_aaNH 2 0.480S_aasN

2 0.094S_sOH þ 0.014S_dO 2 0.148Rotlbonds 2 0.206Hbonddonor þ 0.665Iz_amino

2 0.892IZ_ethoxy 2 0.750Iz_hetami 2 0.920IZ_hethydro þ 0.512IW_cl 2 0.937B1_o 2 0.612pp

2 0.767B1_p þ 0.634INH

n ¼ 97, R 2 ¼ 0.873, R2
a ¼ 0.866, Q 2 ¼ 0.831, F ¼ 125.00, s ¼ 0.299, PRESS ¼ 39.759

FA-MLR (13) pC ¼ 6.427 þ 0.972(^0.292)3xc 2 0.632(^0.344)B2_p 2 0.414(^0.392)B3_o

2 1.46(^0.537)S_aasN 2 1.86(^0.536)IZ_amin o 2 2.289(^0.555)IZ_hethydr

n ¼ 97, R 2 ¼ 0.735, R2
a ¼ 0.718, Q 2 ¼ 0.701, F ¼ 41.680, s ¼ 0.831, PRESS ¼ 70.320

GFA-MLR (14) pC ¼ 5.835 2 0.985pp 2 0.106S_sOH þ 0.230S_sCH3
2 0.358Rotlbonds þ 0.819IW_Cl

þ 0.056S_dO þ 0.483S_aaNH 2 0.272B12p 2 0.613B3_o þ 0.670IZ_amino

n ¼ 97, R2 ¼ 0.869, R2
a ¼ 0.853, Q 2 ¼ 0.828, F ¼ 56.870, s ¼ 0.599, PRESS ¼ 40.365

G/PLS (15) pC ¼ 7.906 2 0.969Rotlbonds þ 0.165S_sCH3
2 0.850B4_p þ 1.517INH þ 1.4393k

2 1.593S_aaaC 2 0.654B3_o

n ¼ 97, R 2 ¼ 0.818, R2
a ¼ 0.808, Q 2 ¼ 0.785, F ¼ 81.890, s ¼ 0.427, PRESS ¼ 50.440
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and Equation 8 obtained from individual group of

descriptors. The GFA model obtained from 100,000

iterations (Equation 14) consisted of ten predictors out

of which five are topological three are physicochemical

and two are indicator variables. In case of G/PLS

obtained from 5000 iterations, the best equation (five

components) showed 80.8% explained variance and

78.5% predicted variance. Table VI shows a comparison

of statistical parameters of different models applied on

the whole data set. For QSAR using the combined set of

descriptors (total 84 in number as a pool from which

variables were chosen), we did not check the Fmax

criterion of Livingstone and Salt [49]. However, we

selected equations based on validation criteria (internal,

or external for the next section).

Splitting of the data set into training and test sets. Not even

a robust and validated QSAR model can be expected to

reliably predict the response for the entire universe of

chemicals [50]. Only the predictions for chemicals

fallingwithin the applicability domaincan be considered

reliable. The selection of training and test sets should be

based on the proximityof the representative points of the

test set to representative points of the training set in

the multidimensional descriptor space.There are

different methods of rational division of QSAR data

set into training and test sets [51] out of which a

clustering technique has been used in the present case.

At first all compounds were clustered according to

their structural similarities (using K-means clustering

technique) as shown in Table VII. From each of seven

clusters, approximately 25% of the compounds were

taken in the test set as shown in Table I by superscript

“*”. Using 72 compounds as the training set,

equations were developed which are shown

in Table VIII. The test set compounds were used to

examine predictive potential of the compounds and

predictive R2 values (R2
pred) were noted. While

developing the models, both physicochemical and

topological descriptors along with indicator variables

were used. In this case, stepwise regression gave the

best Equation (Equation 16) with twelve predictors

including E-state parameters, connectivity index,

Balaban index, hydrophobicity parameters etc.

In case of PLS, Equation 17 was obtained with eleven

variables (six components). Although the value of

explained variance was low but predictive power of the

model was good. In case of FA-MLR, Equation 18

had shown that except connectivity index all other

four variables had negative impact on anti-HIV-1

activity. Equation 19 was obtained from GFA-MLR

with 100,000 iterations with nine variables. This

equation includes six topological descriptors and three

indicator variables. In case of G/PLS with 5000

iterations, Equation 20 was obtained. Like PLS, it has

low explained variance but good predictive capacity.

It consists of two E-state parameters, two kappa shape

indices, one indicator, one hydrophobicity parameter

and one connectivity index. Table IX shows that the

Table VI. Comparative study of statistical parameters of models using different descriptors.

Type of descriptors Statistical method Q2 R2 Ra2 F s

Physicochemical þ indicators FAMLR 0.739 0.772 0.757 50.890 0.771

Stepwise 0.816 0.854 0.837 50.324 0.632

PLS 0.792 0.826 0.822 222.460 0.410

GFA-MLR 0.821 0.862 0.844 48.280 0.618

G/PLS 0.788 0.825 0.819 145.810 0.412

Topological þ indicators FAMLR 0.688 0.721 0.706 47.010 0.849

Stepwise 0.811 0.867 0.849 45.799 0.609

PLS 0.782 0.847 0.837 83.120 0.359

GFA-MLR 0.804 0.859 0.841 47.030 0.625

G/PLS 0.736 0.782 0.770 65.290 0.512

Combined (whole) FAMLR 0.701 0.735 0.718 41.680 0.831

Stepwise 0.849 0.891 0.877 63.403 0.548

PLS 0.831 0.873 0.866 125.000 0.299

GFA-MLR 0.828 0.869 0.853 56.870 0.599

G/PLS 0.785 0.818 0.808 81.890 0.427

Combined (training) FAMLR 0.677 0.723 0.702 34.510 0.845

Stepwise 0.853 0.906 0.887 47.243 0.522

PLS 0.782 0.842 0.831 57.650 0.269

GFA-MLR 0.823 0.883 0.866 52.110 0.566

G/PLS 0.806 0.844 0.604 71.610 0.265

Table VII. Serial numbers of compounds under different clusters.

Cluster No. Serial numbers of compounds

1 1;23;25;27;28;29;30;31;32;34;44;45;46;47;48;85;

86;87;88;89;96;97;100;110

2 2;11;13;16;17;18;19

3 5;14;21;39;40;41;42;79;80;82;91;92;93;94

4 6;12;20;22;81;83;84;95

5 7;53;66;68;71;72;73;74;75;76;77;78

6 9;10;24;26;33;35;36;37;38;49;50;55;63

7 90;98;101;102;103;104;105;106;107;108;109;111;

112;113;114;115;116;117
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GFA derived model has the maximum R2
pred value.

The squared correlation coefficient values between the

observed and predicted values of the test set

compounds with (r2) and without (r2
0) were also

noted. All the models have satisfied the requirement of

the value of (r2 2 r2
0)/r2 being less than 0.1 as

recommended by Golbraikh and Tropsha [52].

Moreover, R2
pred value is mainly controlled by

the value of ðYtest 2 �YtrainingÞ
2, i.e., mean of training

data set. Thus, it may not truly reflect the predictive

capability on new dataset. Besides squared regression

coefficient (r2) between observed and predicted values

of the test set compounds does not necessarily mean

that the predicted values are very near to observed

activity (there may be considerable numerical differ-

ence between the values though maintaining an overall

good intercorrelation). To better indicate external

predictive capacity of a model a modified r2 term (r2
m)

was defined in the following manner [53].

r2
m ¼ r 2 1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 2 r2

o

q���
���

� �

In case of good external prediction predicted values

will be very close to observed activity values. So, r2

value will be very near to r2
o value. In the best case r2

m

will be equal to r2 whereas in the worst case r2
m value

will be zero. In the present case r2
m values of all the

models [Equations 16–20] are acceptable.

Artificial neural network. For the development of neural

network model we had trained the network with the

training set using backpropagation followed by

conjugate gradient descent method. The network so

developed was used for prediction of anti-HIV-1

activity values of the test set compounds. Using

different iterations of backpropagation and conjugate

gradient descent, varying numbers of hidden layers

and its units per layer, a number of models were

developed. Neural networks were optimized using a

training subset. A separate subset (the selection

subset) was used to halt training to mitigate over-

learning, or to select from a number of models trained

with different parameters. Then, a third subset (the

test subset) was used to perform an unbiased

estimation of the network’s likely performance.

During this study we have first selected certain

values for iterations, numbers of hidden layers,

Table VIII. Different equations obtained from combined set of descriptors using different statistical methods from the training set.

Physicochemical,

topological and

indicator

Stepwise

regression

(16) pC ¼ 21.259 þ 1.18(^0.322)3xc þ 0.79(^0.478)IZ_NH2 2 0.295(^0.062)S_sOH

2 1.07(^0.334)pp þ 1.01(^0.898)S_sssN þ 1.92(^0.630)INH 2 0.223(^0.088)

S_sNH2 þ 2.53(^1.190)JX 2 1.45(^0.339)IZ_ethoxy 2 0.267(^0.184)Hbondacceptor

2 0.57(^0.374)po þ 0.55(^0.472)IW_Cl

n ¼ 72, R 2 ¼ 0.906, R2
a ¼ 0.887, Q 2 ¼ 0.853, F ¼ 47.243, s ¼ 0.522, PRESS ¼ 0.2647,

RMSEP ¼ 0.835

PLS (17) pC ¼ 7.463 2 0.302f 2 0.6353xvc þ 0.152S_sCH3
2 1.607S_aaaC þ 1.381S_sssN

2 0.085S_sOH þ 0.926IZ_amin o 2 0.538IZ_hetami 2 0.810IZ_hethydr þ 0.545B2_m

þ 1.215INH

n ¼ 72, R 2 ¼ 0.842, R2
a ¼ 0.598, Q 2 ¼ 0.782, F ¼ 57.650, s ¼ 0.269, PRESS ¼ 37.070,

RMSEP ¼ 0.859

FA-MLR (18) pC ¼ 5.478 þ 0.927(^0.366)3xc 2 0.479(^0.404)B2_p 2 1.37(^0.612)S_aasN

2 0.243(^0.059)S_sOH 2 1.466(^1.320)sm

n ¼ 72, R 2 ¼ 0.723, R2
a ¼ 0.702, Q 2 ¼ 0.677, F ¼ 34.510, s ¼ 0.471, PRESS ¼ 54.976,

RMSEP ¼ 0.904

GFA-MLR (19) pC ¼ 1.433 2 0.180S_sOH þ 2.9722x þ 2.091IZ_ethcarb þ 0.264S_aaCH

2 2.8571x þ 2.681INH 2 0.0998S_sNH2
þ 0.610IW_Cl 2 1.269pp

n ¼ 72, R 2 ¼ 0.883, R2
a ¼ 0.866, Q 2 ¼ 0.823,

F ¼ 52.110, s ¼ 0.566, PRESS ¼ 30.201, RMSEP ¼ 0.799

G/PLS (20) pC ¼ 3.824 þ 0.193S_sCH3
2 1.1602kAM þ 0.7312x þ 0.680S_aaNH

2 0.161S_sOH 2 0.796B3_p 2 1.176IZ_ethoxy þ 0.061k

n ¼ 72, R 2 ¼ 0.844, R2
a ¼ 0.604, Q 2 ¼ 0.806, F ¼ 71.610, s ¼ 0.265,

PRESS ¼ 33.010, RMSEP ¼ 0.969

Table IX. Comparison of predictivity parameters of different models obtained from the training set.

Statistical methods

Q2

(Training set)

R2

(Training set)

R2
a

(Training set)

R2
pred

(test set) r2 r2
o (r2 2 r2

o)/r2 r2
m

FA-MLR 0.677 0.723 0.702 0.693 0.677 0.674 0.004 0.643

Stepwise 0.853 0.906 0.887 0.738 0.708 0.708 0.000 0.702

PLS 0.782 0.842 0.831 0.722 0.695 0.695 0.000 0.691

GFA 0.823 0.883 0.866 0.760 0.736 0.734 0.003 0.704

G/PLS 0.806 0.844 0.604 0.647 0.636 0.635 0.002 0.614
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numbers of elements per layer etc. After that we have

increased and decreased the numbers of a particular

parameter by fixing the other parameters. Here we

have presented comparative study of 5 different

models in Tables X and XI. The model shown in

bold is the best one which we have developed so far.

In that model one hidden layer of 39 elements was

used. Initialization method selected for network was

random uniform. Weight decay was regularized in

both phases (decay factor ¼ 0.01, scale factor ¼ 1).

Learning rate and momentum of each iteration were

adjusted to 0.01 and 0.3 respectively. Number of

crossvalidated resampling was set to 15. During 15

resampling, numbers of cases selected for training,

selection and test were 36, 19 and 4 respectively. Root

mean square error of prediction (RMSEP) of this

model was 0.765. In Table XII, r2 (correlation

coefficient between observed and predicted value) of

nonlinear method (ANN) was compared with the r2

value obtained from other linear methods.

Overview

Different statistical methods like stepwise regression,

PLS, FA-MLR, GFA-MLR, G/PLS have been

applied for modeling anti-HIV-1 activity of indolyl

aryl sulfone derivatives using physicochemical and

topological descriptors along with indicator variables.

Different equations indicate that sulfonyl group

flanked between the indole nucleus and phenyl ring,

NH group of the indole nucleus, hydrophobicity of the

substituents on the phenyl nucleus and chlorine atom

at the 5 position of indole moiety are necessary for

optimum interaction with reverse transcriptase

enzyme. These interactions are also supported by the

previously published results of docking studies on this

group of compounds [16]. In case of the modeling

Table XI. Comparison of external predictivity characteristics of

different ANN models.

Model No. r2 r2
o (r2 2 r2

o)/r2 r2
m

1. 0.662 0.607 0.084 0.506

2. 0.742 0.727 0.020 0.652

3. 0.729 0.716 0.019 0.644

4. 0.782 0.765 0.020 0.682

5. 0.764 0.751 0.017 0.677

Table X. Comparative study of different networks.

Model

No.

No. of

hidden

layer

No. of unit in different

layers

No. of cross

validated

resampling

No. of epoch in backpropa-

gaion followed by conjugate

gradient descent

Absolute

error

mean

Correlation coefficient (r2)

between Obs. & Pred.

values of the test set

1. 3 40 39 38 18 500,200 0.829 0.662

2. 2 39 37 15 800,700 0.686 0.742

3. 1 38 15 500,200 0.721 0.729

4. 1 39 15 800,700 0.641 0.781

5. 1 39 15 800,600 0.654 0.764

Table XII. Comparison of r2 between observed and predicted

values of the test set compounds using different techniques.

Statistical Methods r2 value

Stepwise Regression 0.708

PLS 0.695

FA-MLR 0.677

GFA-MLR 0.736

G/PLS 0.636

ANN 0.781

Figure 1. Scatter plots of observed versus predicted values of the

test set compounds using (a) stepwise regression model {Equation

16]; (b) GFA-MLR model [Equation 19; (c) artificial neural

network model [ANN model 4].
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of the whole data set with physicochemical par-

ameters, the best equation based on internal validation

characteristics was obtained with GFA-MLR

(Q2 ¼ 0.821). When the data set was modeled with

topological descriptors, the best model came from

stepwise regression (Q2 ¼ 0.811). On using combined

set of descriptors, the best model was obtained from

stepwise regression (Q2 ¼ 0.849). Again, the whole

dataset was divided into training set (72 compounds)

and test set (25 compounds). The best model

obtained from the training set (stepwise regression)

showed good internal predictive power (Q2 ¼ 0.853)

which was superior to predictive power of the model

(Q2 ¼ 0.81) obtained from 3D-QSAR study pub-

lished in reference [26]. The external predictive power

of the model was also encouraging (R2
pred ¼ 0:738).

However, the model showing the best external

validation parameter was one obtained from GFA-

MLR. (R2
pred ¼ 0:760). Again, ANN model was

developed based on the training set data. The best

model obtained from ANN showed a good r2 value

(squared regression coefficient between observed and

predicted values) for the test set compounds (0.781)

which was superior to the corresponding value (0.736)

in case of the best linear model (GFA-MLR). This

suggests that nonlinear modeling performs better than

the linear technique for this data set. The calculated

(or predicted) values of the compounds according to

Equations 16 and 19, and ANN model (4) are given in

Table I. The scatter plots of observed versus predicted

values of the test set compounds according to stepwise

regression, GFA and ANN models are shown in

Figure 1.

Conclusions

Among the linear models, the best equation based on

internal validation was obtained with stepwise

regression while the best model based on external

validation was obtained from GFA-MLR. Again, ANN

models were better than GFA-MLR model based on

external validation. Thus, nonlinear modeling performs

better than the linear technique for this data set.
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